You are here: Course Descriptions


STAT-618 Bayesian Statistics (3) Course Level: Graduate

Bayesian Statistics (3) Principles and applications of modern statistical decision theory, with a special focus on Bayesian modeling, data analysis, inference, and optimal decision making. Prior and posterior; comparison of Bayesian and frequentist approaches, including minimax decision making and elementary game theory. Bayesian estimation, hypothesis testing, credible sets, and Bayesian prediction. Introduction to Bayesian computing software and applications to diverse fields. Grading: A-F only. Prerequisite: STAT-514.