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Working Group Summary – Amos Golan 
The goal of this working Group (WG) was to study and explore the basic notion of value of 
information and the potential value of data. We concentrated on the following Four Questions: 

1. Can information theory be used for developing new tools for evaluating the full potential, and 
potential value, of datasets and the information stored in these data?  

2. Is it possible to extend information theory to account for the meaning of the information 
embedded in the data?  

3. Is the value of information independent of the inferential approach used?  
4. Is it possible to measure the value (or potential value) of a model or a theory?  
To explore these questions, the fundamental question of ‘what is information’ arose naturally. 
In my opening talk I discussed the basic background related to value and  potential value of 
information, as well as the fundamental question of what is ‘information.’ Rather than provide my 
thoughts (and definitions), I expressed the different ideas as questions so as not to bias the 
discussion before we start. 
The group was inherently interdisciplinary (math, ecology and evolution, complex systems, 
physics, information theory, information-theoretic inference, computer science, visualization, 
political science, international development, ecosystem ecology, biodiversity, biochemistry and 
personalized cancer therapy, economic statistics, agricultural economics, electrical engineering, 
geosciences and, social sciences, philosophy, law, statistics, data science, computational biology, 
economics and econometric) which triggers a nice discussion, though no basic agreements on the 
concept of value or potential value. 
Though much of the debate is to do with the notion of ‘value’ and subjectivity, some of the focus 
was on trying to think about the problem from a more practical point of view. Among the most 
debated issues were the (i) relationship and dependence (or independence) between a model, the 
answer that model is designed to solve and the information in the data used, and (ii) the 
relationship between Shannon information (or ‘communication’) theory, meaning and value. 
Overall, this set of questions is tough to sort out and demands much work and research. However 
– and possibly due to the interdisciplinary nature of the group – many interesting, and at times, 
new ideas came up in the conversations that may open the door for further study of that topic. 
There is much more to do, but I see it as a very productive start. 
 
   



Summary of the SFI Working Group on the value of data and information 
 
John Harte 
 
My initial hoped-for outcome of this Working Group was a quantifiable rule for estimating 
the value of data and/or information.  This anticipated rule would resolve questions such 
as: Does value scale additively or multiplicatively with some measure of the quantity or 
cost of data? Is value most naturally expressed on a logarithmic or a linear scale?  Does 
value derive from an axiomatic foundation, the way Shannon Information Entropy does?  
Clearly such an outcome would be of great “value”, if for no other reason than providing a 
rationale for funding the collection of data. 
 
Yet I rather dogmatically titled my opening presentation: “The value of data depends on 
what you do with it”.  In part, this was to incite others to prove me wrong, to come up with 
a foundational basis for assigning value to data and information irrespective of the 
hypothesis, model, or theory that the data are used to test, irrespective of the outcomes of 
such tests. 
 
In my talk I discussed, in the context of my Maximum Entropy Theory of Ecology, what 
constitutes useful versus useless ecosystem census data.  Two data sets, with the same 
Information Entropy, can provide very different value; moreover, the data set that is 
useless in the context of my theory can be extremely useful for initializing or testing a 
different theory. 
 
From the Working Group discussions and presentations, the contextuality of value seems to 
be the conclusion across disciplines and across the various analytical frameworks used to 
make better use of data. 
 
The value of data or information is, I had concluded in my talk, much like the value of time.  
Without question, the time spent at SFI with this Group was extremely valuable.  It would, 
of course, have been easy to waste those two days doing something else.  While my initial 
hope for a quantifiable foundational approach to the value of data and information was not 
to be, the group process of arriving at that conclusion was fun and fulfilling. Whether the 
conclusion is final may require another meeting.   
 
 



The Value of Data and Information — The Four Professors Problem 
Min Chen, University of Oxford, United Kingdom 

The four professors problem was introduced to exemplify the relative merits of, and the characteristic trade-offs among, 
four major types of processes in data intelligence workflows, namely, statistics, algorithms, visualization, and interaction. 

Four professors sit down to discuss the examination marks of 𝑁 students. 

• Professor S (who teaches statistics) argues that we should just consider a few statistical measures such as the 
mean value of the 𝑁 marks and the standard deviation. 

• Professor A (who teaches algorithms) argues that we should just use algorithms to make the decision, e.g., first 
determining the minimum and maximum marks, and then dividing the 𝑁 marks into four equal-sized groups. 

• Professor V (who teaches data visualization) argues that we should just visualize the 𝑁 marks, e.g., using a bar 
chart and then make decisions. 

• Professor I (who teaches human-computer interaction) argues that whenever we need the information about a 
specific student, we should just type the name of the student into the computer to search the database where 
the 𝑁 marks and other relevant information are stored and make decisions based on the search results. 

Of course, we all know that the four professors should really work together. This raises a fundamental question as to 
how to optimise the uses of machine-centric processes (e.g., statistics and algorithms) and human-centric processes 
(e.g., visualization and interaction) in a data intelligence workflow, where data is transformed to decisions. Information-
theoretically, a dataset is a collection of instances of valid letters in a data alphabet 𝔻0, and a decision is an instance of 
a valid letter in a decision alphabet ℤ𝑖(𝑖 = 1,2, ⋯ , 𝑛). Here “decision” is a generalized term that encompasses the 
outcomes of a data intelligence workflow, such as a decision, a mathematical expression, a machine-learned model, a 
piece of representable knowledge, or so on. Chen and Golan proposed a cost-benefit ratio [1], 

benefit

cost
=

alphabet compression − potential distortion

cost
=

ℋ(𝔸𝑗) − ℋ(𝔸𝑗+1) − 𝒟(𝔸′𝑗||𝔸𝑗)

cost
  

for assessing any process 𝑃𝑗  in a data intelligence workflow. Here 𝔸𝑗  and 𝔸𝑗+1 are the input and output alphabets of 𝑃𝑗  

respectively. 𝔸′𝑗  is an alphabet that has the same letters as 𝔸𝑗  but likely has a different distribution. 𝔸′𝑗  is reconstructed 

from 𝔸𝑗+1. ℋ() is the Shannon entropy and 𝒟() is a divergence measure bounded by [0, ℋmax(𝔸𝑗)] [2]. The unit of the 

benefit term is bit if binary logarithm is used. The fundamental cost is energy, and its unit is joule, which can be 
approximated using time, a monetary quantity, etc. This cost-benefit ratio can be used to compare different processes 
as well as different workflows. Building on this concept, Chen and Ebert formulated a systematic methodology for 
optimizing a data intelligence workflow that can be used in practice in a coarse-grain manner [3]. 

 This working group 
meeting (at SFI on April 2-3, 
2024) provides an opportunity to 
consider the feasibility of using 
the benefit term as an 
informative measure of the value 
of data. During the working 
group meeting, this proposal was 
shown to have met several 
critical criteria suggested by the 
participants, such as (i) a value 
measurement must reflect the 
quality of data and decisions; (ii) 
because a dataset may be used 
by different workflows, the 
values obtained for these 
workflows must be additive; and (iii) the value measurement must capture the essence of usefulness while maintaining 
a reasonable level of abstraction and generality. As shown in the above figure, we can consider using the benefit term 
as an informative value 𝑢𝑖

∗ (𝑖 = 1,2, ⋯ , 𝑛) with a common unit bit, while defining the application-specific utility 
functions as 𝑢𝑖 = 𝑓(𝑢𝑖

∗, 𝛼1, 𝛼2, ⋯ ) where 𝛼1, 𝛼2, ⋯ are application-specific variables. 
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On the Intrinsic Value of Information 

Radu Balan 

 

Abstract (Draft) 

The objective of this project is to investigate whether it is possible to construct an intrinsic 
(objective/absolute) value of information. We take the notions of “intrinsic value”, “absolute 
value”, and “objective value” to be exactly the same here. There are two ways to construct such a 
measure. The first is that such an intrinsic (absolute) notion of information is based on the 
information’s intrinsic value; it is free of the observer, the agent or any other reference set. The 
second is to construct the absolute value of information based on subjective preferences. We 
show two basic results. The first is that an absolute value of information cannot be subjectively 
based. The second is that there exists a value function that satisfies basic principles but it has two 
major flaws: it grows with the number of elements in the information set (but remains finite), and 
it is not free of subjectivity – it a function of some inherent, and non-unique weights. We 
conclude that an intrinsic value of information function does not exist. 

More specifically, we first introduce the axioms that any value of information function should 
satisfy. Let X denote an information set, e.g., actions, decisions, objects. Let P(X) denote the power 
set of X, that is, the set of all subsets of X, 𝒫𝒫(𝑋𝑋) = {𝐴𝐴 , 𝐴𝐴 ⊂ 𝑋𝑋}. In the following we assume the 
set 𝑋𝑋 is finite of cardinal 𝑁𝑁. A map 𝑣𝑣:𝒫𝒫(𝑋𝑋) → ℝ is called a value of information if it satisfies four 
properties: positivity, normalization, monotonicity, and concavity: 

P1. (positivity) For any 𝐴𝐴 ⊂ 𝑋𝑋 , 𝑣𝑣(𝐴𝐴) ≥ 0 ; 

P2. (normalization) 𝑣𝑣(∅) = 0 , 𝑣𝑣(𝑋𝑋) = 1.   

P3. (monotonicity) For any 𝐴𝐴,𝐵𝐵 ⊂ 𝑋𝑋 if 𝐵𝐵 ⊂ 𝐴𝐴 then 𝑣𝑣(𝐵𝐵) ≤ 𝑣𝑣(𝐴𝐴) ; 

P4. (concavity) For any ,𝐵𝐵 ⊂ 𝑋𝑋 , 𝑣𝑣(𝐴𝐴) + 𝑣𝑣(𝐵𝐵) ≤ 𝑣𝑣(𝐴𝐴 ∪ 𝐵𝐵) + 𝑣𝑣(𝐴𝐴 ∩ 𝐵𝐵). 

Our results so far show that the collection of value of information functions form a compact 
convex set with a finite number of extreme points. The number of extreme points is finite but 
very large (double exponential in N). Different hierarchical levels produce different super 
additive measures: first order extreme points correspond to ordinary (additive) measures; second 
order extreme points correspond to the Dempster-Shafer evidence theory. Higher order extreme 
points remain to be found and classified. 

 



The Potential Value of Information and Data 
Luís M. A. Bettencourt, University of Chicago, April 2024 
 
The potential value of information and data is a natural question in complex systems, but it 
does not arise in traditional disciplines such as Physics, with its focus on energy, or even in 
information theory by itself, because of its principal focus on information transmission and 
inference. It is by connecting issues of energy flow and information that the potential value 
of data can be defined and assessed. 

Specifically, all agent in complex system are dissipative and consequently are 
required to obtain free energy (resources) from their incompletely known environments. 
This defines the most essential objective for any agent, to which others can be added if 
necessary. Obtaining energy from an environment requires predicting its states, often from 
existing signals, and acting accordingly, thus “investing” energy.  Doing this optimally 
requires incorporating such signals and data from past experience optimally, which is done 
via Bayesian updating of the conditional probability of environmental states given “data”. 
  This structure of energy investment, prediction of the environment, acting 
accordingly, and reaping benefits (probabilistically) is general and can be applied to any 
situation by changing the objective, the environment, and the signals that the agent can 
access. The potential value of data then follows from the resources that can be returned by 
this process, relative to present resources. The figure below summarizes this scheme:   
 

 
This formalization also clarifies that the value of data depends on the theory of the 
environment adopted (likelihood), which is a model for what should be observed (data), if a 
specific hypothesis (state of the environment) is realized. An observer with a ‘bad’ theory 
will interpret the data as gibberish and find no value in it, whereas one with a good theory 
can realize a high value. This means that it is often worth it to store data as a “public good”, 
in the hope that better theories can be found among a larger population of agents or 
discovered at later times.  This also means that for data to be created and stored (which is 
costly) it will likely have an intended primal use, with some tangible expected value. 
However, in general that value is almost certainly a lower bound to the potential value of 
data and the information it conveys on a wider range of problems not initially considered or 
even imagined. Thus, it is in general very difficult to place an upper bound on the value of 
data and the information it can convey on a range of problems.  



 
 
 
    
 
 
 



Final Memo  Tasha Fairfield 

Summary of presentation 
 

My works focusses on the value of qualitative information for inference to best 
explanation.  Many scholars in my field (political science) are skeptical of the contributions that 
qualitative information can make to causal inference (Don Green has gone as far as asserting 
that nothing can be learned from observational evidence), and qualitative information tends to 
be neglected relative to quantitative data.  That tendency also exists in other fields. Many 
doctors seem to equate scientific diagnosis with running tests that give hard quantitative 
information.  But qualitative information can be invaluable for figuring out what is going on, 
whether it comes from listening to a patient describe their symptoms and family history,1 or 
interviewing key informants about a policy process to understand how the govt was able to 
enact a reform.   

When qualitative information is considered, the reasoning is often sloppy, biased, or even 
illogical.  And much of the guidance in political science for how to handle qualitative evidence is 
informed by frequentist statistics, which is highly problematic.  According to its own foundation 
principles, frequentism can only be used to analyze stochastic data.  But it does not make sense 
to pretend that qualitative information from expert interviews or archival records or news 
reports is in any way analogous to a random sample. King, Koehane & Verba’s book, Designing 
Social Inquiry, is a prominent example of frequentist-inspired prescriptions for qualitative 
research.  Many qualitative scholars thought their approach was misguided, but leading efforts 
to push back have not managed to articulate a rigorous and cogent alternative.  So despite a lot 
of effort, scholars have not been doing a good job of extracting the inferential value of 
qualitative information.   

Andy Charman and I have been trying to convince social scientists that Bayesianism 
provides a far better inferential framework. Our book in essence takes E.T. Jaynes’ work on 
probability as extended logic and translates it into guidance for rational reasoning with 
qualitative evidence (Fairfield & Charman 2022).  In plain language, the five basic steps are as 
follows: 

 

(i) Consider a pair of rival hypotheses, H1 and H2 
(ii) Use any relevant background knowledge (I) to assess how plausible H1 is relative to 

H2  [prior odds: P(H1|I ) / P(H2|I )]  
(iii) Find some evidence, E   
(iv) Evaluate how strongly E favors H1 relative to H2   

[likelihood ratio: P(E|H1 I ) / P(E|H1 I ) ] by mentally inhabiting the world of each 
hypothesis and asking which one makes E more expected 

(v) Update your prior odds to obtain your posterior odds [P(H1|E I ) / P(H2|E I )]: 
whatever our prior odds were, we gain confidence in whichever hypothesis makes 
the evidence more expected. 
 

In my context, hypotheses are plain language propositions that aim to explain how and why 
something happened.  Evidence can be any salient and well-documented observation that 

 
1 In a recent interview with Terry Gross, Dr. Elizabeth Comen (author of All in Her Head) commented: “I don’t think 
additional testing is necessarily the way to go.  Most of the time you can discern what’s going on with a patient by 
listening to them.”  
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bears on the truth of the hypotheses, with essentially no restrictions.  Consider the example 
below: 
 

HZ = The covid-19 pandemic originated via zoonosis, whereby SARS-CoV-2 or a closely 
related progenitor virus was transmitted from bats to an intermediary animal that 
subsequently infected one or more people and then spread within the human 
population. 
 

HL = The covid-19 pandemic originated from laboratory research.  Staff at a research 
institute became infected while conducting genetic engineering for gain of function 
research, and subsequently transmitted the virus into the human population. 
 

E = Dr. Shi Zhengli, a lead WIV virologist at the center of lab-leak theories, conveyed the 
following to Scientific American:  “If coronaviruses were the culprit, she remembers 
thinking, ‘Could they have come from our lab?’ ... Shi frantically went through her lab’s 
records from the past few years to check for any mishandling of experimental 
materials... Shi breathed a sigh of relief when the results came back: none of the 
sequences matched those of the viruses her team had sampled from bat caves. ‘That 
really took a load off my mind. I had not slept a wink for days.’”  (Qiu 2020) 

 

These hypotheses cannot be easily reduced to mathematical models.  And the evidence cannot 
naturally be quantified.  Here one could collapse the evidence into a binary clue, where the 
possible values are either “yes” or “no” when Shi Zhengli is asked whether her lab had the virus.  
But then we would lose all of the nuanced details of what she said that matter for evaluating 
the relative likelihood of the evidence. 

But we can quantify our degrees of belief, if we work with the log-odds form of Bayes’ rule: 
posterior log-odds = prior log-odds + weight of evidence,  where the weight of evidence is 
proportional to the logarithm of the likelihood ratio.  We recommend using decibels (dB), which 
is a familiar log scale (Fairfield & Charman, Chap. 4). Then when we assess the weight of 
evidence, we can use an analogy to sound, where we ask how loudly the evidence is talking—
e.g., does it whisper, or does it shout in favor of one hypothesis over the other? This approach 
also helps leverage intuition, because as per the Weber-Fechner law, perception works on a log 
scale, not a linear scale.  

Working with log-odds and quantifying in decibels helps us express our probability 
assessments more precisely. That helps pinpoint sources of disagreement between scholars 
more effectively.  It also helps us aggregate the net inferential weight more carefully when the 
evidence does not all stack up neatly in favor of the same hypothesis.  There is one important 
caveat: probabilities cannot be unambiguously specified in many social science contexts.  
Especially (but not exclusively) in qualitative research, there will always be some arbitrariness 
and subjectivity that creeps in when we are working with complex, real-world evidence.  Our  
approach promotes more systematic and transparent reasoning, but it cannot eliminate all 
subjectivity or automatically produce consensus among scholars.  

 
Example of Bayesian reasoning 
 

For the covid example above, we have testimonial evidence, where we need to reason 
about the likelihood that Dr. Shi would give the reporter this account of events under each of 
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the rival hypotheses. I will invoke as background information that on the one hand, Dr. Shi is 
highly respected among her international colleagues, while on the other hand, she lives under 
and effectively works for the highly authoritarian Chinese government.  

In the world of HZ, the lab is not the source of the outbreak, and the most likely scenario is 
that Shi is telling the truth when reporting that the WIV did not have a SARS-CoV-2 progenitor 
virus. This kind of response would be expected. Shi is known as a responsible and respected 
scientist, she collects and studies bat viruses, and the outbreak occurred in very city where her 
lab is located. She would check her records just to make sure, and she would have every 
incentive to report the findings that clear up her concerns and absolve the lab.  

Under HL, we would reason that Shi is lying—it seems implausible for her to make an 
honest mistake on this matter in a world where her lab was conducting genetic engineering on 
a SARS-CoV-2 progenitor virus. This particular lie is a good cover story, because it mimics how 
one would expect her to behave in the HZ world. But it seems at least a bit less likely for Shi to 
make this kind of statement under HL. Assuming that Shi would be under great pressure from 
the government to cover up a lab leak, we would expect a less detailed, more adamant denial 
of responsibility that definitively dismisses the possibility that the virus came from her lab—
something like: “I was highly confident in our safety protocols, but out of an abundance of 
caution, I double checked and found nothing.”  

Accordingly, E weakly favors HZ over HL. But the inferential weight depends on one’s 
background information. The more confidence one has in Shi’s probity and the more room to 
speak honestly one believes she would have regardless of what the truth entails, the more E 
favors zoonosis, whereas the greater the incentives one thinks she would have to defend her 
reputation even if the virus leaked from her lab and the more serious the consequences one 
believes the government would impose on her for disclosing a lab leak, the less informative the 
evidence becomes. We cautiously attribute only very weak weight to the evidence, about 4dB, 
assuming it would be very costly for Shi to disclose the truth in a lab leak world.  
 
Applications of information theory 
 

Our book includes a few applications of information theory for understanding test strength 
and guiding case selection (Fairfield & Charman, Chaps. 11, 12), which are big issues in political 
science that have been subject to a lot of debate and confusion. (Case selection can be thought 
of as a qualitative analog of experimental design.) Before gathering data, we might want a 
measure of anticipated test strength that takes into account our uncertainty about what 
evidence we will find. Relative entropy does that by averaging the weights of evidence (W) over 
the possible evidentiary outcomes, weighted by their respective likelihoods.  For binary 
evidence that can take one of two possible values, K or ~K we have:  

 

 
 

Expected information gain in turn averages the relative entropies over our uncertainty about 
which H is true, which gives a single measure of anticipated test strength: 
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Whereas Collier (2011:828) treats the lame-sheep clue as another straw-in-the-wind test, our

analysis reveals that it provides a much stronger test of H1 vs. H0. Since LRK is large while

LR
K

is very close to one, we have a smoking gun. In our assessment, the weight of evidence is

around 30 dB in favor of H1 (similar to the silent dog). This example can in fact be considered a

quintessential smoking-gun test—Holmes has discovered a low-likelihood clue that a↵ords high

probative value. The renowned detective himself seems well aware of this smoking-gun logic

upon hearing the stable boy’s response, as evidenced by both his content (regarding a strongly

probative clue), and his surprise (regarding an unlikely clue): “Holmes was extremely pleased,

for he chuckled and rubbed his hands together. ‘A long shot, Watson, a very long shot,’ said

he...” (Conan Doyle quoted in Collier 2010:12).

5.2. Relative Entropies

We have stressed that once the evidence is in hand, updating is governed entirely by the like-

lihood ratio; accordingly, post-data test strength is simply described by the weight of evidence

for the clue outcome that materializes. At the pre-data stage of research, however, we do not

know whether we will find K or K. We would thus like to have a measure of anticipated test

strength that incorporates our uncertainty regarding the clue outcome, rather than a measure

of post-data test strength that conditions on the realized clue value. To that end, we draw on

the concept of relative entropy from information theory.

The relative entropies D(H1;H0) and D(H0;H1), also known as discrimination information or

Kullback-Leibler numbers, measure the degree to which a test will typically produce a large

weight of evidence in favor of one hypothesis or the other. We calculate these quantities by

averaging the weights of evidence over the two possible clue values, weighted by the respective

likelihoods of the clue outcomes:

D(H1;H0) = P (K |H1 I)WK + P (K |H1 I)WK
(16a)

D(H0;H1) = �P (K |H0 I)WK � P (K |H0 I)WK
. (16b)

The negative signs in the second equation arise because WK and W
K

refer to the weights of

evidence in favor of H1 vs. H0 (equations 14). D(H1;H0) is the expected weight of evidence

in favor of H1 if that hypothesis is true; the dual quantity D(H0;H1) is the expected weight of

27

for H1 or a hoop test for H0. Likewise, as D(H0;H1) grows large, we approach either a smoking-

gun for H0 or a hoop for H1. The relative entropies cannot distinguish between these two

respective test-types, because they average out information about whether the clue is present

or absent. However, the distinctions are largely irrelevant; these tests either substantially boost

the posterior probability of one hypothesis relative to the other, or they provide little evidentiary

weight. Low values of both relative entropies yield straw-in-the wind tests.

5.3. Expected Information Gain and Asymmetry

At the pre-data stage, it makes sense not only to average over possible clue outcomes, but also

to average over our prior uncertainty regarding which hypothesis is correct. In this way we can

obtain the expected information gain, which provides a single overall measure of anticipated

test strength:

D = P (H1 | I) D(H1;H0) + P (H0 | I) D(H0;H1) (17)

The quantity D is the most natural pre-data measure of test strength; it tells us how loudly we

expect the test to speak in favor of the best hypothesis. D is zero only when clue probabilities

under both hypotheses are equal, such that no learning can occur. It is infinite if and only if

one of the relative entropies is infinite, meaning there must be at least one clue outcome that

is impossible under one hypothesis yet possible under the other. D treats both hypotheses and

both clue values on equal footing—it is invariant under exchanging the roles of H0 and H1

and/or K and K. D e↵ectively combines clue likelihoods and priors on the hypotheses into

a single measure of the expected amount of information relevant to adjudicating between the

hypotheses.

Since we now have a single measure of anticipated test strength, no further work is needed;

however, if we proceed to define a second coordinate, we can provide another probative-value

space mapping of Van Evera’s tests. While there is no definitive coordinate that complements

the information provided in D, a good choice would be a quantity related to the variance

(expected mean-square deviation) in the weight of evidence anticipated from the test. The

variance in information gain can be usefully decomposed into an average within-hypothesis

component, due to uncertainty in clue outcome, and a between-hypothesis component, due to

intrinsic di↵erences in discriminating strength when one or the other hypothesis is true. We
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In essence, it tells us how loudly we expect whatever evidence turns up to speak in favor of the 
best hypothesis.  

For inference to best explanation, the value of information depends on the inferential 
approach.  For Bayesian inference to best explanation (the optimal framework), the value of 
information is best defined as the weight of evidence, which tells us how much we have learned 
about which hypothesis is more plausible.  The value of information would be identical to the 
quality of evidence: high quality evidence provides a large weight of evidence.  Prospectively, 
the value of information that we plan to collect would be expected information gain, which 
takes the more general form: 

 
 

    
 
The value of information is accordingly relative to the inferential problem: it is conditional on 
the hypotheses under consideration; it is conditional on our background information; 
prospectively, it is also conditional on the details of how and where we plan to look for the 
information (Sc). The weight of evidence and expected information gain are ideally or 
approximately objective, in that rational thinkers with identical background information should 
assign the same values (or hopefully similar values in practice).  

In contrast, the value of information for solving problems is inherently subjective.  It 
depends on the uses and implications of knowledge.  And it depends on the decision maker’s 
utility function, which may vary dramatically for different actors.  For the covid origins question, 
relevant actors have motivations that are very much at odds—to the extent that some would 
like to continue investigating whereas others would prefer not to learn anything more at all.  
Another important point here is that making decisions should be considered logically distinct 
and subsequent to inference—the optimal framework is Bayesian decision theory (as discussed 
by A.E. Charman).  
 
Thoughts on moving forward 

 
I am dubious about quantifying the full potential value of data, considering that we cannot 

know or even begin to evaluate the uses to which data might be put in the future, the (as yet 
unknown) hypotheses that might tested, the lines of inquiry that might be pursued, or the 
implications of the knowledge generated.  As such, I would propose finding some more 
pragmatic considerations for deciding what data to collect and justifying its potential (albeit 
unknowable) value.  For the USDA, one route might involve inviting data-collection proposals 
from academics and users more broadly, to find out what range of projects and questions might 
draw on data that falls under the agency’s purview.  One might in essence solicit something 
akin to a grant proposal, where authors justify the inferential value of the data they are 
interested in and elaborate the potential relevance of their findings for public policy or other 
activities that the agency or its superiors would like to foster.  Data that could be used for 
multiple project proposals or for projects deemed to be more important or more relevant could 
be considered higher priority, and the proposals themselves could be used to justify the 
agency’s decisions about what data to collect.  Presumably the goal would be to collect data 
that is not otherwise available through other databases or public agencies.  
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increase or decrease our uncertainty about which hypothesis is correct, the expectation is that

it will reduce our uncertainty (that is, when we average over the possible Ek and Hj). Further-

more, any case evidence can be expected to strictly reduce uncertainty unless the probabilities

over possible observations are completely independent of the hypotheses, which would make

the case uninformative, and hence useless for theory testing.

3.2.2. Expected Information Gain

While reducing uncertainty over hypotheses seems a reasonable criteria for case selection, we

contend that a better goal is to get closer to the truth. Although these two objectives will be

closely related in many situations, they are not quite the same thing. To illustrate, suppose that

what is actually (but unbeknownst to us) the correct hypothesis, HT , begins with a somewhat

low prior relative to a rival HF , say 20% versus 80%. Suppose that Case A will turn out to

produce evidence that strongly shifts our beliefs in favor of HT , such that we end up with

equal odds on the hypotheses, 50% for each. In contrast, Case B will end producing misleading

evidence that nudges the odds further in favor of the wrong hypothesis, to 10% for HT versus

90% for HF . Then Case A takes us closer to the truth by resurrecting a hypothesis that we

previously discounted, but in doing so it also increases our uncertainty about the hypotheses—

50-50 is the maximal uncertainty we could have regarding which hypothesis is correct. In

contrast, Case B further reduces our uncertainty relative to the prior state of knowledge, but

it misleads us to favor the wrong hypothesis even more strongly. If we have resources for only

one of the two case studies, we would produce a better inference by examining Case A rather

than Case B.

Accordingly, a better approach to case selection entails maximizing our expectation of finding

evidence in favor of the correct hypothesis. To that end, we can calculate the expected infor-

mation gain, D, which averages the discrimination information across hypotheses, weighted by

their prior probabilities:

D(SC, I) =
X

j

P (Hj | I)D(Hj : H j |SC I)

=
X

j

P (Hj | I)
X

k

P (Ek |Hj SC I) log
h
P (Ek |SC Hj I)
P (Ek |SC H j I)

i
.

(10)

Comparing to equation (??), we can see that the only di↵erence between M and D is that for
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case would reflect a smoking-gun test, which is characterized by complementary behavior of the

relative entropies. [However, neither prospective hoop tests nor prospective smoking-gun tests

justify the “Sinatra inference” logic that we critiqued in Section 2.2.]]

D(Hj : H j |SC Hj I) =
X

k

P (Ek |Hj SC I) log
h
P (Ek |Hj SC I)
P (Ek |H j SC I)

i
(A4)

D(H j : Hj |H j SC I) =
X

k

P (Ek |H j SC I) log
h
P (Ek |H j SC I)
P (Ek |Hj SC I)

i
(A5)

D(SC, I) =
X

j

P (Hj | I)D(Hj : H j |SC I)

=
X

j

P (Hj | I)
X

k

P (Ek |Hj SC I) log
h
P (Ek |Hj SC I)
P (Ek |H j SC I)

i (A6)

Ek: Composite information learned from case

SC : Search strategy for finding case evidence

H j : Logical negation of Hj , e.g. H1 = H2 or H3 or ... HN



Using thermodynamics and information theory for interpreting 
molecular tumor data and predicting cellular responses and 

treatments 

 
Nataly Kravchenko-Balasha, HUJI, Israel. 

 

Following the workshop sessions, I present my summary and conclusions on my 
understanding of the "value of information" and its application to biology and cancer 
research. 

The value of information can be described as the amount of knowledge a scientist 
obtains at the end of the analytical method. This knowledge is a "power" that enables 
scientists to alter the examined system, possibly by changing its course. The dynamics 
and recent development of information theory toward many scientific fields and 
interpretations enables for its ongoing progress and expansion into new applications.   

I'll give an example of how to apply information theory and determine the value of 
information in the field of personalized medicine.  

I propose computing free energy changes in each cancer tissue to translate biological 
experimental information into knowledge. We calculate free energy change by 
integrating the patient-specific constraints that lead the tissue to deviate from its 
steady state1.   

Why should results from clinical or biological tests be understood in terms of free 
energy or thermodynamics?  Because this informs us whether our system is stable or 
unstable. If a system is unstable, then, as in chemistry and physics, a spontaneous 
shift from higher to lower free energy states, known as steady state, will always occur 
when the system is unconstrained.  To induce a transition towards steady state in 
unstable systems, we must first identify and understand the constraints before 
determining how to remove them. In our latest study, which included over 800 
leukemia patients, we found that diseased states are often less stable1.  Thus, to 
restore a tissue's steady state, we proposed targeting central proteins involved in each 
constraint that cause the system to shift from its steady state.  

We experimentally demonstrated that the "amount of knowledge" we obtained at the 
end of the thermodynamic-based approach, namely the computation of patient-
specific constraints reflecting ongoing, tumor-specific molecular processes, allowed 
us to effectively construct tailored therapies that focused on patient-specific 
constraints2,3.  Thus, in the case of precision medicine, the value of information can 
be evaluated by our capacity to stop/ reduce tumor growth.  

Ongoing research in our lab aims to use the knowledge embedded in patient-specific 
constraints to modify tumor tissue in a number of additional parameters, such as 
inhibiting tumor cell spreading, stimulating the immune system, or preventing cancer 
cells from communicating with the non-cancer environment. 
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The Value of Data and Information: the role of uncertainty and view perspective 

Rossella Bernardini Papalia, Department of Statistical Sciences, University of Bologna, Italy  

The value of data and information is closely connected to the concept of uncertainty of data and 
information. Data is information with many types, forms, origins, and content. Each form of data 
may be characterized by different quality dimensions as: reproducibility and replication, volume, 
velocity, variety, veracity. However, information is not a statistical data, it is a form of substantial 
knowledge when processed and validated. The statistical data arises from a set of conditions: a 
cognitive objective, a system of hypotheses, a definition and classification criteria, a strategy and 
a controlled measurement, a validation process that allow reliability to be measured through clear, 
objective, and understandable indicators. A-critical use of information can generate of which 
cognitive significance may not be clear or even misleading or incorrect. The Value of the data and 
information is strictly connected with their use, and it depends on the view perspective, so it is 
necessary to distinguish between the producer or user view. For a producer of statistical data, the 
actual challenges for evaluating the full potential of available sources of data, datasets and related 
information strictly depend on the integration and linking of registers and the new database 
stemming from IT or AI based measurements. Understanding uncertainties related to these new 
forms of data is very important and crucial. Evaluating data/information uncertainty is then 
necessary to reveal the value of the information and its nexus with: (i) the potential complex system 
that generated information; (ii) the data generation process when data is analyzed; (iii) the meaning 
and statistical properties of the data generated by the AI measurement tools. By processing 
information: uncertainty can be reduced at both input and output levels. At a data Input level data 
quality can be measured in accordance with known dimensions while, at an output data level, the 
quality of results can be improved in terms of predictive power and estimate accuracy with 
reference to the specified relationship and related statistical models. Since Shannon’s Entropy 
represents a lower-bound on the number of actual bits required to store or transmit information, 
the entropy can show the real amount of information that a field is providing in each database. The 
maximum Entropy can show the potential amount of information that a field or a set of data can 
provide (some available fields potentially could not provide any information). Both are useful to 
understand the nature of the dataset in terms of information messages stemming from different 
sited or sources and may represent suitable data quality measures at an input level. From a user’s 
perspective that operates at an output level, more focus on extracting the information content of 
data, it could be useful to adopt Information Theoretic based methods less affected by the 
constraints of sampling and or non-sampling errors in data with the advantages of evaluating the 
informative power of constraints and/or theoretic basic assumptions. Finally, some specific 
considerations are required to overcome the challenges in order to evaluate the full potential of 
data/information when new IT/AI based tools are used: experimental work is needed to interpret 
the information content of this the new AI form of data. The working group meeting provides an 
opportunity to analyze critical points from different perspectives often connected to case studies 
and theories. Qualitative and theory-based aspects have been shown as major drivers of 
information value.   



Notes on Generic Value of Information

Wojciech Szpankowski

1 Generic Definition

Let us assume that there is unknown hidden random variable Y ∈ Y upon which one makes a decision
(e.g., in medical diagnostics). In order to learn Y we perform a series of tests t ∈ T = {1, . . . , n}.
We shall assume that we can observe xT = {xt}t∈T , however, we also may have access only to partial
observables denoted as xA = {x}t∈A⊂T . The cost of a test t is denoted as c(t).

Unfortunately, Y is usually unknown, so a test t reveals some outcome Xt ∈ X that is correlated
to Y . We would like to estimate the posterior probability P (Y |X).

Finally, we have set of decisions D to choose from based on the outcome X. In principle, after
performing a set of tests and observing X about hidden Y , we make a decision d ∈ D. To quantify
its benefit we introduce a utility function u(y, d) : Y ×D → R≥0.

Now we are ready to state a general definition of value of information.

Definition 1 Upon observing xT (or partial observation xA) we define the value of information (VoI)
as

VoI(xT ) := max
d∈D

EY [u(Y, d)|xT ]

where the expectation is with respect to Y . We can replace in the above xT by xA, and then VoI(u, xA)
also depends on xA.

The above definition is in the spirit of Howard [2] and was inspired by [1]. One can ask, however,
whether we can formulate an axiomatic definition of VoI based on [3].

2 Optimal Strategy

Following [1] we can define an interesting optimiztion problem.
Define first regret as

R(d|xA) := max
xT :P (xT |xA)>0

[VoI(xT )−EY [u(Y, d)|xT ]].

Our goal is to find the best policy π that minimizes the cost with regret not exceeding some ε.
More formally, let us denote by S(π, xT ) ⊂ T × X a set of observations by running policy π. Then,
we can define our optimization problem as

π∗ ∈ argπ min c(π) s.t. ∀xT
∃d : R(d|S(π, xT ) ≤ ε

for some small ε. This formulation is solved in [1] using submodular functions.

References

[1] Y. Chen, S. Javdani, A. Karbasi, J. Bagnell, S. Srinivasa, and A. Krause, Submodular Surro-
gates for Value of Information, Proc, Twenty-Ninth AAAI Conference on Artificial Intelligence,
3511a3518, 2015.

[2] R. Howard, Information value theory, IEEE Transactions on Systems Science and Cybernetics,
2(1): 22-26, 1966.

[3] B. Steudel, D. Janzing, and B. Scholkopf, Causal Markov Condition for Submodular Information
Measures, rerXiv:1002.4020, 2010.

1



Brief summary of my experience at the Value of Information working group meeting  
Gideon Yaffe 
4/9/24 

 
I found the Value of Information working group meeting in April 2024 to be very helpful.  

Much of my current research concerns normative questions about the law of evidence.  By 
“normative questions” I mean questions about how the law of evidence should be.  Since 
sometimes how the law should be is how it is already, my research sometimes concerns crafting 
convincing arguments in favor of particular laws of evidence as they are currently formulated.   
 One research problem with which I have been concerned recently involves explaining 
and rationalizing a particular entrenched practice on the part of legal professionals tasked with 
applying the law of evidence.  The practice of interests concerns the inadmissibility of many 
forms of so called “statistical evidence”—evidence about the statistical properties of sets of data 
which one side or another wants to offer to fact-finders to allow them to make inferences about 
the properties or behaviors, not of groups, but of particular individuals that are relevant to the 
legal decision at hand.  Information, for instance, about the percentage of individuals who have a 
particular set of characteristics that the perpetrator of the crime possessed, for instance, is often 
inadmissible—attorneys on both sides are barred from presenting such information to the court.  
If, for instance, the defendant is charged with entering the baseball stadium without a ticket, the 
prosecution is barred from explaining to the jury that while 100,000 people attended the event, 
only 1000 bought tickets, which implies that the probability is 99% that any person who attended 
the event (which the defendant admits having done) did not purchase a ticket.  However, very 
similar evidence is sometimes admissible; attorneys are not barred from showing DNA 
evidence—evidence concerning the percentage of people who have DNA that matches the 
perpetrator of the crime.  The challenge for a researcher like myself is to explain what the 
difference is, if any, between statistical evidence that ought not to be presented to the fact-finder 
and statistical evidence that can be.  Although there have been efforts made to solve this 
problem, they have not been successful; the challenge remains unmet. 
 I think it is fair to say that the most important thing that I learned at the conference was 
that this problem—along with others of the sort with which I have been concerned—might be 
tackled with help from information theory.  Systematic and rigorous study of the law of evidence 
is in many ways in its infancy, and information theory has simply never been used for this 
purpose.  A couple of times in my career I have encountered tools where there are sociological, 
rather than substantive, reasons why they have not been used to solve the problems of greatest 
interest to me.  Neuroscience, for instance, has been used less often to tackle question about 
criminal responsibility, or how mental illness bears on it, than it could be.  This is largely 
because doing so requires both neuroscientific and legal expertise, and people very rarely have 
both.  I suspect that the reason information theory has not been used to query the law of evidence 
is for similar reasons.  I am hoping to remedy this by taking steps to master information theory, 
and then use what I learn to answer fundamental normative questions about the law of evidence.  
It was the experience at the working group meeting that convinced me to take this step.   



Information and Data in veridical data science  

Bin Yu 
Statistics, EECS, Comp. Bio., UC Berkeley  

According to the New Oxford American Dictionary, information is “facts provided or learned 
about something or someone”. Information about facts in my data science world is obtained 
through a process called data science life cycle (DSLC) to answer domain questions (whose 
answers are the facts to seek) such as: 
What genes drive a heart disease (HCM)? Whether a patient has prostate cancer? 
How to predict Madden-Julian-Oscillation (MJO)?  

DSLC is not deterministic hence information about facts comes with uncertainty.  Reliable 
uncertainty quantification is key to trustworthy information about facts. DSLC starts with 
domain question(s) and proceeds with data collection or access, data cleaning and curation, 
exploratory data analysis, model or algorithm development, validation, and communication of 
data-driven results in the context of domain question(s). Every step of a DSLC is a source of 
uncertainty due to data collection process and human judgment calls.  The Predictability-
Computability-Stability (PCS) framework and documentation have been introduced for 
veridical (truthful) data science ([1,2,3,4]) to synthesize, unify, streamline, and expand on ideas 
and best practices in both ML and Stats to arrive at scientifically reproducible results.  
Specifically, PCS considers sources of uncertainty from data cleaning and model choices in 
addition to the traditional statistical uncertainty from sample-to-sample variability under a well 
vetted probabilistic data generation model. The uncertainty from data cleaning is well-known 
among practitioners who clean data themselves, and the uncertainty from algorithm or model 
choices by different teams of data scientists have gotten attention lately (e.g. [5]).  It is high time 
to formally address these additional sources of uncertainty and PCS is developed exactly for 
this purpose through “S” and to enhance the requirement for reality check through “P” in every 
step of a DSLC. “C” is a necessity for both “P” and “S”. PCS has enjoyed successes in many 
research areas including cancer prediction and seeking genetic drivers for HCM. However, 
addressing “C” for “S” is a frontier research topic for big data AI research including LLM 
developments and for entropy or mutual information estimation via multiple methods and 
possibly based on differently cleaned data sets. PCS is a practical philosophy and a research 
program for trustworthy information extraction from data. It is evolving as more and more 
researchers use it to meet challenges in their own research fields. 
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Spiro Stefanou 
Administrator, USDA/Economic Research Service 
 
The Economic Research Service (ERS) is one of the 13 Federal Statistical Agencies comprising the US Federal 
Statistical System.  We have a $90 million budget with full discretion on how it is allocated.  As a Federal 
Statistical Agency, we are a data factory as well as a research and analysis agency. 
 
Data play an important role in maintaining and advancing a civil society. Data and facts provide evidence to 
policy making. A stakeholder will take facts and align them with their interests and then overlay their values 
to advance policy.  A competing policy should be based on the same facts aligned with different interests and 
overlaying different values. And then the policy debate ensues. Quality data will lead to good statistics that 
can lead to good policy. Poor data will lead to bad statistics, that will lead to bad policy. 
 
Data are foundational to our work and constitute approximately 20% of the budget for both in-house surveys 
and proprietary data purchases. This begs the question: What is the value of publicly provided data and 
information?  We have engaged in the background work to start documenting the corpus of literature using 
our data assets using machine learning algorithms, so can assess how are data products are informing the 
literature. The next steps are to assess how our data are feeding to policy documents at the Congressional 
level, think tanks and related policy paper series.  ERS hosts over 80 publicly available data products and 8 
confidential data products. 
 
ERS has a broad mission to anticipate trends and emerging issues in agriculture, food, the environment, and 
rural America and conducts high-quality, objective economic research to inform and enhance public and 
private decision making. We accomplish this accomplish this by producing timely economic statistics, 
building, and strengthening research data on agriculture and rural America, and providing the public with 
trusted sources of information and secure means of data dissemination.  
 
We are organized into three research divisions, all heavily dependent on public and proprietary data 
products. The Food Economics Division conducts economic research and analysis on policy-relevant issues 
related to the food sector (food safety, food prices, and markets); consumer behavior related to food choices 
(food consumption, diet quality, and nutrition); and food and nutrition assistance programs. This division also 
provides data and statistics on food prices, food expenditures, and the food supply chain. 
 
The Market and Trade Economics Division monitors, evaluates, and conducts research on domestic and 
foreign economic and policy factors affecting agricultural markets and trade. Research focuses on policy and 
program alternatives, domestic and international markets, commodity analysis and forecasts, international 
food security, and development of analytical tools and data.  
 
The Resources and Rural Economics Division studies linkages between agricultural, energy, climate, and 
environmental policies; ecosystem services and land use; research and development of agricultural 
technologies and agricultural productivity; dynamics of farming; rural development; and the well-being of 
farm and rural households. This division also collaborates with USDA’s National Agricultural Statistics Service 
to plan and implement an annual national survey of farm enterprises and farm households. 



Brief Summaries (Q2 and Q3) of the Breakout Groups 
Basic Questions for the Groups:  

1. Can we develop concepts of potential value based on meaning and semantics? 
2. Are there fundamental differences in the informational content of information generated 

from a complex system/process and one that is a result of a simple process?  
3. What is the relationship between value of a model and the value of Information used to 

construct that model? 
 



Q2: Are there fundamental differences in the informational content of information generated 
from a complex system/process and one that is a result of a simple process? 
Radu Balan (moderator, note taker) 
In information is Shannon's information, then more complex systems, that have a larger n 
(number of states/outcomes) then the larger n the larger the entropy hence information. 
Several points of view were discussed. 
A.  
If we deal with data compression, a memoryless system,  
If the system is a sum of collection of subsystems,  
simple system: x->x' , y->y'  
a complex system: (x(t+1),y(t+1)) = F(x(t),y(t)) where transitions can happen between x->x' or 
x->y' and y->x' and y->y' with certain probabilities. 
B.  
Biophotons can be produced by plants, or simple systems, or humans, or more complex 
systems.  
Measurements would be able to differentiate the steady-state radiation, and distinguish between 
these types of radiation..  
C. 
A probabilistic modeling of the distinction between simple and complex system: 
Complex system (C) has a larger observation vector (x,y) drawn from: 
(x,y) ~ p(x,y;a,b) 
A simple system/process (S) has instead a smaller observation vector distributed according to 
x ~ q(x;a) 
If y is not measured/known or y is missing, then how to deal with this problem? 
Options to consider are: 
1) Need to consider the marginal distribution:  
(C') : x ~ r(x;a,b) = int p(x,y;a,b) dy (marginal over y) 
2) Use the nuisance parameter approach, where y is estimated using the maximum likelihood 
approach: 
(C'') : x ~ s(x;a,b) , where s(x;a,b) = p(x,yhat;a,b) , yhat(x) = argmax_y p(x,y;a,b) 
Then: 
Information extracted from one of models (C'), (C'') is to be compared to information extracted 
from S. 
 
 



D. 
Model Selection/decision between a simpler or a more complex system is performed  
by optimization of an objective function that performs a trade-off of two components: (1) how 
well the model explains the data x; (2) complexity of the model.  
AIC, BIC, MDL are just variations of the penalty term, but, fundamentally, any and all these 
approaches are the same. Differences are the degree of belief. 
Conclusion: there are no fundamental differences between simpler/more complex system from 
information point of view. There are only differences in terms of degree of computational 
complexity.  
 
 
  



3. What is the relationship between value of a model and the value of information used to 
construct that model? 
 
John Harte, Tasha Fairfield, Spiro Stefanou. Luis Bettencourt (moderator, note taker) 
 
We discussed many things, largely using USDA examples on data collections and goals.  
 
We agreed that – based on previous working group discussions – the value of a model and the 
value of information (data) used to construct it are not independent. Each definition of value 
needs the other: the model needs the data, and the data needs the model in order to acquire value.  
 
That said, sometimes one starts with data collections, and some other times with a model. 
Subsequently the two must iterate to realize (and even potentially realize) value.  
 
It is possible that once a model or theory are codified from data, that the original data cease to be 
essential and in that sense loose (some of) their value. The theory should be able to both generate 
new data, or assess the consistency of new data with its predictions. This can be seen clearly in a 
Bayesian estimation scheme, where P(D|H) is used for inference (as a likelihood), but can also be 
used later as a posterior, a generative model to produce data.  
 
We feel that an important concept that came from the discussions is the idea of a minimum 
(expected) value for the data. This is usually defined by the most proximate motivations to 
collect the data; without such motivation the data will not be collected. However, this is a 
minimum value in the sense we discussed that many other uses and users, including in the 
context additional theories are possible and even likely in the future. This should add motivation 
to data collections but is hard to calculate.  
 
A few additional threads in the conversation are reported loosely below: 
 
Spiro: Acquiring data at a public scale is a massive undertaking, you should have a model for 
when and how to do it.  
 
An example of a pilot at the USDA on snap program (food stamps): data collection of food 
acquired and consumed … did a pilot, analyzed by the census, they concluded that the data 
collections via cell phones were inappropriate as they excluded many sectors of the population…  
the drive to collect location of food acquisition and consumption was driven by the question of  
inaccessibility of nutritious food. 
 
Do federal agencies create hypothesis and questions before they collect data? Spiro though so, 
but we were not sure that there was a formal way in which this is incorporated into their process.   
 
Tasha: What are we trying to learn? What are we trying to explain? What evidence to collect?  
 
John : There is information to construct the model versus information to test the model.  
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